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Abstract

This paper presents and compares organo-mineral composites from Crassostrea iredalei (slipper
cupped oyster), Perna viridis (green shell), and Telescopium telescopium (horned snail) in the removal of
hexavalent chromium from water. Shells were oven-dried, ground, and sieved to fine powder size.
Replicates of 10 ppm dichromate solution were individually treated with 1 mg of shell powder for 20
minutes. Following conversion of absorbance to concentration and % Cr® removed, T. telescopium was
found to be most efficient in Cr* remediation with 9.632% removal, followed by P. viridis at 8.444%, and
C. iredalei at 3.431%. Chromium removal is attributed to electronegativity differences between the metal
and structural organic components of the shell composites, as well as the capacity of CaCOgsto facilitate
surface adsorption. Differences in the concentrations of Cr® removed result from variances in
biomineralization among mollusk species, which dictate the characterization and concentration of

CaCOs in their shell layers.
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Introduction.  Heavy metals are increasingly
emergent pollutants in bodies of water as a by-
product of anthropogenic industrialization, and they
continue to rise in concentration in recent years [1,
2]. These metals enter the aquatic ecosystem through
waste disposed by industrial, commercial, and urban
residential areas near bodies of water [3], as well as
through direct contact or abrasion with road-
deposited sediments usually displaced by storm run-
off [2]. In trace amounts, these metals are essential to
natural biogeochemical cycles [4]. Beyond safe
concentrations, however, they disrupt the normal
functions of the ecosystem, and are potentially
hazardous to its organic components [5, 6].

Lead, cadmium, and chromium are among the
most prevalent heavy metals in bodies of water,
already exceeding safe limits in aquatic food
products as demarcated by the United States
Environmental Protection Agency (US-EPA), World
Health Organization (WHO), Food and Agriculture
Organization of the United Nations (FAO), and the
Food and Drugs Administration (FDA) [4, 6]. Of
these, chromium—a key material in the production
of stainless steel, metal plating, and the
manufacturing of industrial dyes and paints—has
become alarmingly prevalent in water systems.
Effluents containing chromium contribute to the
existing heavy metal pollution in water, primarily
hailing from chemical plants, tobacco smoke, and
contaminated landfills [1, 7, 8].

Generally, heavy metals have -cytotoxic,
mutagenic, and carcinogenic effects to the health of
organisms upon prolonged exposure [6]. In its

hexavalent oxidation state, Cr (VI), chromium posits
similar harmful effects: it is toxic to vital tissues of
biotic organisms near contaminated water, a strong
irritant, and a potential human carcinogen [1].
Moreover, the bioaccumulation of Crf* in humans
can cause fatal complications in metabolism and
regular bodily functions, resulting in acute organ
failure and even death [8]. As a result, hexavalent
chromium compounds are categorized by the
Department of Environmental and Natural
Resources (DENR) under its Priority Chemical List
(PCL), for strict regulation and monitoring in the
environment. Despite this, Cr® in the ecosystem
continues to exceed the 0.1 ppm Philippine safe
standard, reaching concentrations of up to 16 ppm

(91

Numerous technologies and treatments, which
make use of various physical and chemical
interactions in the environment, are currently
employed to address heavy metal pollution in water.
Among these strategies, the most favorable method
of remediation is adsorption, a process involving the
deposit of atoms and ions onto the surface of a highly
porous, solid material [8]. Biological by-products are
considered more novel, potential sources of good
adsorbents, a facet of the method’s cost-
effectiveness, low energy demand, feasibility,
accessibility, and sustainability [11].

Organic waste from agricultural activity were
tested and proven efficacious as low-cost heavy
metal adsorbents [11]. While land-based waste
products are prevalently sourced and studied in
adsorptive remediation research, the potential of
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waste products derived from aquatic resources are, in
comparison, yet to be maximized. Nonetheless, the
effective heavy metal removal of calcium carbonate
(CaCO3z)—a mineral potently occurring in limestone,
lime mud, eggshells, and mollusk shells—is well-
established [12, 13, 14, 15].

Of these calcium reservoirs, mollusk shells—
considered by-products of global shellfish
consumption and big contributors to solid waste
management problems in the country [17]—emerge
as a more renewable and novel, albeit less explored
CaCOs-rich bioadsorbent [14, 16]. Generally, these
shells are composites of several superimposed
calcified layers structured by organic functional
groups [15, 18]. A large percentage of the shell’s
chemical makeup is composed of either one of two
naturally-occurring polymorphs of CaCOs [19];
however, the identity of the polymorph produced, as
well as its percent composition, varies across mollusk
species as a result of interspecies variations in shell
formation [18, 20, 21, 22]. Thus, the capacities of
shells derived from different mollusk species are
expected to differ with respect to the identity and
amount of heavy metal contaminant that the
composites can remove [18].

However, there is a current lack of batch studies
that consider differences in the remediation
efficiencies of different speciated mollusk shells. To
address this gap, this study investigated the short-
term Cr® removal efficiencies of three of the most
commonly consumed and produced mollusks in the
Philippines [28]: Crassostrea iredalei (slipper cupped
oyster), Perna viridis (green shell), and Telescopium
telescopium (horned snail).

Specifically, the study aimed to:

(1) measure the initial and final absorbance of the
Crb solution before and after treatment of C.
iredalei, P. viridis, and T. telescopium using UV-
Visible spectrophotometry;

(ii) obtain the concentration of Cr® removed by
C. iredalei, P. viridis and T. telescopium using a Cr®
calibration curve; and

(iii) compare the concentration of Cr6* removed
by C. iredalei, P. viridis and T. telescopium using
One-way ANOVA.

Methods. Prior to treatment, C. iredalei, P.
viridis, and T. telescopium shell composites were oven-
dried and processed to fine powder size. These
treatments were then incorporated in 1 mg doses to
three replicates of a 10 ppm Cr® solution per shell
species. Treatments were incorporated to the solution
for a contact time of 20 minutes. The absorbances of
the solutions before and after treatment were
measured using UV-Visible Spectrophotometry, from
which Cr® concentration values were derived. One-
way analysis of variance (ANOVA) was conducted to
test for significant differences among and between
treatments.

Preparation of shell samples. Samples were
purchased from a local wet market, segregated by
species, and boiled at 100°C for 10 minutes to remove

unnecessary organic matter. Shell meat and flesh
were removed prior to fragmentation, and the shells
were shattered before rinsing with distilled water.
Samples were subsequently oven dried at 105°C for a
total of 24 hours, crushed to fine powder, and sieved
to a particle size range of < 63um.

Treatment. Prior to testing, a 10 ppm Cr® solution
was freshly prepared from the dilution of potassium
dichromate (KoCrqO7) in distilled water. The initial
absorbance of the stock solution was measured using
a Shimadzu UV-Visible (UV-Vis) Spectrophotometer.
The initial pH value was also recorded using a pH
meter, and the solution was adjusted to a value below
3 through the addition of 1 M hydrochloric acid (HCI).
Acidic conditions were maintained to prevent the
reduction of Cr% ions to Cr® in solution, which occurs
upon basification or with the incorporation of the
organo-CaCOs treatment [24]. Setups corresponding
to each of the three shell species were prepared, with
three 100-mL replicates of the 10 ppm Cr® solution
prepared per setup. A milligram of the corresponding
treatment was incorporated to each replicate, and all
set-ups were agitated for 20 minutes at 100 rpm, using
alaboratory shaker. Shell powders were filtered out of
the replicates using Whatman No. 40 filter papers.
The absorbance of each replicate was measured, and
final pH values per setup were recorded.

Data analysis. The concentration of Crb removed,
expressed in ppm, was obtained from the difference
between the initial and final concentrations of the
solution, while the adsorption efficiency (Q) of the
three treatments was calculated from the formula:

— (Co—C1)
Q =100 x o

where Co and C; represent the initial and final
concentrations of the Crb* solution, respectively. Tests
for significant differences among the Cr®
concentrations removed by each treatment using
one-way Analysis of Variance (ANOVA) was
conducted after data gathering, and post-Hoc Least
Significant Difference (LSD) test was used in the
further determination of significant differences
between treatments. All statistical tests were run using
the R statistical tool.

Safety Procedure. At all times, personal
protective equipment (PPE) were used in the handling
of laboratory reagents, apparatus, and equipment.
Organic matter in samples were treated immediately
to prevent unwanted interference in treatment and
analysis. All used chemicals were collected in empty
plastic bottles for collection and disposal.

Results and Discussion. 7. telescopium removed
0.784 ppm chromium (VI) from a starting
concentration of 10 ppm (9.632%), the highest amount
among the three treatments, as seen in Table 1.

Table 1. A summary of adsorption efficiencies (Q),
concentration (in ppm) of Cré removed (Co-Cy), initial, and
final pH values for all treatments.

Treatment Co-Ci Q %) PH
(ppm) /" initdal  final
C. iredalei 0.279 3.431 2.12 2.14
P. viridis 0.687 8.444 2.12 2.16
T. telescopium  0.784 9.632 2.12 2.17
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A significant difference was found among groups
at the 95% confidence interval. Furthermore,
following a post-Hoc test for least significant
difference (LSD), significant differences were found
to exist between C. iredalei and T. telescopium, and C.
iredalei and P. wviridis. However, no significant
difference exists between 7. felescopium and P. viridis,
implying that the two treatments are not significantly
different in effectivity and efficiency.

Increments in the final pH were observed for all
treatments, given a starting value of 2.12 (Table 1),
signifying that COs?* ions in the shell powders were
released and incorporated into the solution during the
20-minute contact period [10]. While these values
have not exceeded the threshold of pH 3 to report
significant basification, it was ensured that acidic
conditions were maintained to prevent Cr® reduction
[24].

These findings support the idea that differences
in shell formation per species contribute to variances,
ifany, in the efficiency of organo-mineral composites
in terms of chromium removal [18]. Localizations in
the biomineralization process for each mollusk
species result to variations in the dominant CaCOs
polymorph formed and the quality of the compound
expressed [25]. Moreover, differences in the percent
composition of CaCOsz and organic matter among
mollusk shells have an apparent effect in the
concentration of heavy metal removed by the
material, as the former may not be the sole compound
involved in surface adsorption [15].

Although Crassostrea sp. and P. viridis are reported
to contain more CaCOsg than T. telescopium [19, 21, 22],
the latter surpassed the two in chromium removal and
adsorption efficiency. This can be attributed to the
larger percentage of structural biomolecules, which
have larger electronegativity differences with Crf*
than CaCOg and are responsible for the adsorption of
carbonate salts formed by displacement reactions
involving the species [15, 20, 26].

While no other batch study comparing the heavy
metal removal efficiencies of C. iredalei, P. viridis, and
T. telescopium exists, previous studies have established
their individual capacities for other heavy metals.
Telescopium spp. shells have a maximum adsorption
capacity of 4.6 ppt for copper [20], Perna spp. shells can
adsorb up to 89.23 ppm of zinc [27], and Crassosirea
spp. shells are 96.2% efficient in removing cadmium
from water [28].

Limitations. The results of this study support the
claim rooted in literature that variances in chromium
adsorption efficiency are largely accounted to
differences in the organic and mineral composition of
unique mollusk species. However, the researchers
were not able to determine the specific functional
groups active in the adsorption mechanism, as well as
the amount and the identity of the CaCO3 polymorph
present in the samples used, as they required
additional characterizations via scanning electron
microscope with electron dispersive spectroscopy
(SEM-EDS) and infrared (IR) spectroscopy. Apart
from this, treatment periods were limited to 20
minutes per replicate; thus, the data presented by this

study are only short-term removal efficiencies of
these shell composites. Information on whether the 7.
telescopium treatment remains the most efficient
among the three species at extended contact times
cannot be provided or justified by this study. Lastly,
while a concentration of 1 mg per replicate was used
for all three treatments, this value serves exclusively
as a baseline for comparison; optimizing the
concentration of adsorbent used is beyond the scope
of this study.

Conclusion.  The shells of Crassostrea iredalei,
Perna viridis, and Telescopium telescopium are all capable
of removing Cr% from water, with the latter of the
three reporting the highest amount of the metal
removed and, subsequently, the highest removal
efficiency. These findings are caused by both the
chemical properties of the organo-mineral
components of the shells and differences in the
formation of each shell contribute to their variances
in removed Crf,

Recommendations. The study serves as a
baseline for future comparative analyses of different
mollusk shells in the removal of certain heavy metals
from water. It is highly recommended that similar
batch studies be undertaken to address the dearth of
knowledge in this sector of water remediation. Future
studies are advised to simulate real-time conditions of
heavy metal pollution as a practical application of this
line of research. Additionally, the researchers
recommend that the amount of adsorbent added per
unit volume of replicates be considered in
determining the optimal removal efficiencies of the
treatments used. Lastly, for a more accurate reflection
of the shells’ removal capacities, the effects of contact
time to the concentrations of metal removed should
be considered in the future, and that batch adsorption
kinetics and equilibrium studies employ the
adsorbents used in this study in the investigation of
their long-term effects.
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