3D COMPUTER SIMULATIQN OF A BOUNCING LIGHTWEIGHT
SPHERICAL BODY

A Research Paper
Presented to
The Faculty of Philippine Science High School Western Visayas
Bito-on, Jaro, loilo City

In Partial Fulfillment
Of the Requirement for
SCIENCE RESEARCH 2

Paulo Miguel B. Lacdo-o

Fourth Year Graviton

March 2009

Table of Contents

Approval Sheet
Acknowledgements
Abstract

CHAPTER

I. INTRODUCTION
A. Background of the Study
B. Statement of the Problem
C. Objectives of the Study
D. Significance of the Study
E. Definition of Terms

II. REVIEW OF RELATED LITERATURE
A. Computer Simulations
B. Table Tennis
B.1 Spin
B.2 The Effects of Spin
B.3 The Ball, the Table, and the Paddle
C. Other Concepts
C.1 Kinematics
C.2 Gravity
C.3 Newton’s Laws

. METHODOLOGY

A. Overview of the Methodology

B. Methods
B.1 Gathering of Materials and Physics Concepts
B.2 Development of the Physics Engine
B.3 Development of Graphics Engine
B.4 Development of the Shell Program
B.5 Testing of the Final Program

. IV. RESULTS AND DISCUSSION

A. Results
B. Discussion

V. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

A. Summary
B. Conclusions

C. R009mmendations

LITERATURE CITED

B W W -

U B B N

11

13
14
15

16
16
17
17
18
21
21

23
25

28
28
28

APPROVAL SHEET
This Research Paper Heteto Entitled:

“3D Computer Simulation of a Bouricing Lightweight Spherical Body”
Prepared and submitted by Paulo Miguel B, Lacdo-o in partial fulfifiment of the

requirements in Science Research 2 has been approved and is recommended for
acceptance and approval,

Approved by the committee in oral examination with a grade of PASSED on March

2009.

< \ — ™
b Uinn —
R L. OBERIO ARIS C. LARRODER

Member Member

@ ~
MIALO ¢. LACADEN EDW . ALBARACIN
ember : Member
=G
Member

Accepted in partial fulfillment of the requirements in Science Research 2

, 930 %‘7
SETTE T. BIYO, Rf. D jf

Director Il - PSHSWVC

ACKNOWLEDGEMENTS

First of all, I would like to thank my parents for always reminding me of what to do,

always watching over me, caring and loving me. Thank you for always being
there to support me and help me in everything.

-

T'would also like to express my gratitude to the research teachers who taught us what we
need to know to be able to finish our paper. Thank you for sharing your
lnxowledge with us. I impart my sincere gratitude to Sir Joseph Madrifian for

being patient and understanding, and for being my research adviser.

Thanks also to my classmates and friends for being always there no matter what, and no

matter how terrible the situation was. They were always there to tell me and help

me.

Thanks to my class adviser, Ma’am Evaline Gerochi, for always extending her arms to

help each and every one of us in the class. Thank you Ma’am Val for telling me to
walk the talk. Also thank you to all the teachers who advised me on what to do on
hard times.

Finally, thanks to Greeny because somehow, she acted as my conscience.

LaCdO-O, Paulo Miguel B. “1n Co

spherical Body.” Unpublished R mputh e Simulation of a Bouncing Lightweight
; esearch Paper. Philippine Sci .
Visayas Campus. Brgy. Bito-on, Jaro, Tloilo Cityl.":'i::;’itl,lz'loove sfnm L Seoof Weakern

ABSTRACT
~,

A computer simulation is an imitation of many natural systems in an attempt to
model these systems and gain insight in their operation. Simulations are often used in the
training of civilian and military personnel. Physics computer simulations are used to
model many real life situations or activities like playing a game of billiard, stacking of
objects called rigid bodies, and the bouncing of a ball.

There are simulations that focus in using new algorithms to simulate physics
environments realistically. Some tried to create a basic framework for further
development. Others are simply for leisure.

This study aimed to create a computer program that can simulate the bouncing of
a lightweight spherical body following the laws of physics that governs its motion. The
program was coded using C++ as its programming language. DirectX was used for the
graphics, and Windows was the platform used.

The study produced a 'computer program that can simulate the effects of

aerodynamics and gravity on a bouncing ball.

CHAPTER 1
INTRODUCTION
A. Background of the Study

A simulation is an imitation of a real thing, state of affdirs, or process. Computer
simulation has become a useful patt of modeling many natural systems in physics,
chemistry, and biology, and human systems in economics, and social science as well as in

engineering to gain insight the operation of the said systems. Simulations are also often

used in the training of civilian and military personnel (Wikipedia).

There are plenty of simulations that deal with physics. A study entitled “Non-
convex Rigid Bodies with Stacking” aimed to construct plausible motion instead of
predictive motion. It used triangulated surfaces for geometric representation. A new
algorithm for collision detection and modeling was proposed, which fixed problems with
the previous algorithms. It used contact points, contact graphs, shock propagation, and

included friction (Guendelman and others).

A school project used the ideas and algorithms from the research paper by
Guendelman and others. Its goal was to create a solid framework for simulations of ngid
body dynamics. The project used C++ as the programming language and OpenGL for
rendering. The software supported four primitives: spheres, immovable planes, cubes and
general boxes. Only the spheres and immovable planes were allowed for collisions.
Simple Euler integration was used for solving ordinary differential equations (ODE)

(Lewis). The collision detection was made with the use of bounding boxes, wherein when

two bounding boxes overlap,

collision is detected. The advantage of this is simpler
computations can be made. The disadvantage of this is that the project was using spheres.

Bounding boxes for spheres have Spaces on the corniers that may detect collision even

though the spheres have not yet collided.

In another study, Hsieh and Chang also made a rigid body simulation. Their goal
was to create a realistic simulation of rigid body dynamics, which was a billiard game.
The ideas and algorithmg were based on SIGGRAPH97’ Course Notes Unconstrained
Rigid Body Simulation and Constrained Rigid Body Simulation, both by Baraff and
Witkin. They used Quaternion to represent rotation and some other attributes. Euler
integration was also used in solving ODEs. They used OpenGL for rendering graphics

and Fast Light Toolkit for handling Windows and user inputs.

This study aims to develop a computer software program that can simulate the
path of a spinning lightweight spherical body (table tennis ball) and give realistic

physics-based results which will be rendered in 3D graphics.
B. Statement of the Problem

This study aims to design computer sofiware that can simulate the path of a
spinning lightweight spherical body, a table tennis ball, and give plausible physics-based

results.

3 C. Objectives of the Study

{
£
(43

This study has three objectives:

1. To design a physics engine that can compute all the physics computations of
the software using C++,

5 AT
S A P B oA 1.7

To design a graphics engine that can handle the 3D transformations and

B ek n s s st g Mo g
J'{i PRSR L ST B A

translations, and rendering of the software using C++ and DirectX. The engine

o
e A

will also have an added capability of handling inputs.

To design a shell program that can integrate the physics and graphics engines,
and handle all required processes of the software. The shell program will also

handle Windows processes involved with the software, and will be written

using C++
D. Significance of the Study

The software was designed to use DirectX for rendering graphics and handling
user inputs. The purpose of such is to make the design of the software focused on the

physics computations instead of handling graphics and inputs.

The software will help hobbyists and students see the effects of spin on a ball,

common on most ball sports game like table tennis, lawn tennis, football, and baseball,

without actually being in the game or playing it.

The software can also be used as a basis for making computer games that involves

spins.

E. Definition of Terms

C+-isa general-purpose programming language. It is a statically typed, free-
form, multi-paradigm, usually compiled language supporting procedural programming,
data abstraction, object-oriented programming, and generic programming
(http://en.wikipedia.otg/wikilC%ZB%ZB%).

In this study, C++ is the programming language that will be used in writing the
code of the program.

Computer software - is a general term used to describe a collection of computer
programs, procedures and documentation that perform some task on a computer system
(http://en.wﬂdpedi&org/v&dki/soﬂware).

DirectX - is a collection of application programming interfaces for handling tasks
related to multimedia, especially game programming and video, on Microsoft platforms
(http://en.-wikipedia.org/wiki/DirectX).

In this study, DirectX is the API that will be used in writing the graphics engine.

Physics — is the science of matter and energy and of interactions between the two,
grouped in traditional fields such as acoustics, optics, mechanics, thermodynamics, and
electromagnetism, as well as in modern extensions including atomic and nuclear physics,
cyrogenics, solid-state physics, particle physics, and plasma physics

(http://www thefreedictionary.com/physics).

J

Physic ine - i .
YSIcs engine - is a computer program hat sitmulates Newtonian physics models,

using variableg ‘ § 48 :
g such as mass, velocity, friction and wind resistance, It can simulate and

predict effects under different conditions that would approximate what happens in real

life or in fantasy world (http://enkwikipedia.org/wiki/Physics_engine).

In this study, the physics engine is the part of the software responsible for solving

computations of the program,

Plausible - meang superficially fair, reasonable, or a valuable but often specious

(http://www.mem'am-webster.conﬂdictionary/plausible).
In this study, plausible is to be close to reality.

Rendering — is the process of generating an image from a model, by means of

computer programs (http://en.wikipedia.org/wiki/Rendering_(computer ~graphics)).
In this study, rendering is to display the image on the computer screen.

Table tennis - is a sport in which two or four players hit a lightweight, hollow
ball back and forth to each other with paddles or rackets. The game takes place on a hard
table divided by a net. Players must allow a ball played towards them only once bounce

on their side of the table and must return so that it bounces on the opponent’s side

(http://en.wikipedia.org/wiki/Table_tennis).

CHAPTER 11

REVIEW OF RELATED LITERATURE
A. Computer Simulationg

primitives: spheres, immovable planes, cubes and general boxes. He used simple Euler
integration for solving ordinary differential equations (ODE).

The paper by Eran Guendelman and others mentioned on the paragraph above had
a goal of constructing plausible motion instead of predictive motion. They proposed a
new algorithm for collision detection and modeling. The new algorithm fixed some
problems with the previous algorithms. They used triangulated surfaces for geometric
representation.

Chen-Nan Hiseh and Chia-Ming Chang also made a rigid body simulation. Their
goal was to create a realistic simulation of rigid body dynamics which was a billiard
game. The ideas and algorithms were based on SIGGRAPHO7' Course Notes

e e

FIE sl AN X

7

U"wns”ame‘.j Rigid Body Dynamics and Constrained Rigid Body Dynamics, both by
Baraﬁ’. and Witkin. Euler integration was used in solving ODEs. They used OpenGL for
rendering graphics and Fast Light Toolkit (fitk) for handling Windows and user inputs.

B. Table Tennis

Table tennis is a sport in which two or four players hit a lightweight ball back and
forth to each other with r.ackets‘ The game takes place on a table divided by a net. Players
must allow a ball played towards them bounce only once on their side of the table and
must return it so that it bounces on the opponent’s side. Play is fast and demands quick
reactions. A skilled player can impart spin to the ball, which makes it bounce and its

reaction on the opponent’s racket difficult to predict or return with confidence
(Wikipedia).

B.1 Spin

A ball that is spinning is also easier to return than a ball that is not spinning
because a ball that is spinning has stability at range. A simple explanation of this is a
rifle. There are lands down the inside of the barrel. These lands are grooves that twist in
one direction, causing the bullet to spin. Without the lands, the bullet would stray after
about 50 meters (Letts).

A spinning ball is also harder to receive. A ball imparted with a spin has a curved
path out of the ordinary parabolic path driven by gravity. There are three types of spin

and each has a descriptive path of its own.
B.1.1 Topspin

A ball that is topspun has an axis of rotation along the x-axis. It rotates clockwise
when viewed from the positive x-axis®. It has the tendency to drop faster than the

acceleration due to gravity. It also tends to bounce off the table flatter and faster (Letts).

B.1.2 Underspin

Sometimes also known ag bottomspin, a ball with this spin has its axis of rotation along
the x-axis like a topspun ball. 1t rotates counter-clockwise when viewed from the positive
x-axis. It has the tendency to drop slower than the acceleration due to gravity unlike a

topspun ball. It also seems to float op to the other side, and tends to bounce off the table
higher (Letts).

B.1.3 Sidespin

A ball that is sidespun has it axis of rotation along the y-axis. It tends to curl
either to the left or to the right depending on the direction of its rotation. When viewed
from the positive y-axis, a ball that is spinning clockwise has a path curving to the right,
while a ball spinning Counter-clockwise has a path curving to the left (Letts).

B.2 The Effects of Spin

B.2.1 Moving through air

The flight of a ball through air, like the path of any object through a fluid,
depends upon the properﬁes of both the object and the fluid. These specific properties
influence the path that the ball takes. In particular, the path of a ball in flight is strongly
affected by air resistance. The forces on a ball from air resistance are typically of the
same magnitude as gravity, so they have quite noticeable effect (Berger 2000).

B.2.2 Bernoulli’s Principle

One of the most fundamental concepts in all fluid dynamics is the streamlirte.
Streamlines are lines tangential to the velocity vector at each point in a fluid at a single
moment in time. For steady flow, a streamline actually traces the actual path of an

individual fluid particle. By drawing streamlines, one can accurately visualize the flow

around a ball (Berger 2000).

While an individya| Streamline in
density of all streamlineg indicates itg m

dicates the direction of the fluid flow, the

Priptgy + vyt “P/p gyt Vavy

Here, p is the density of the fluid, p is its

_ i _ pressure, y is its height, and v is its
velocity. This equation is called Bernoulli‘s Equatio

fi (Betger 2000).
B.2.3 Viscosity

Viscosity i iots
Sity 1S a measure of the friction among adjacent layers of fluid, parallel to
the fluid flow. It manifests itself in the fluid’s resistance to change shape.

The relative effects of viscosity for a particular case are represented by a
dimensionless constant called the Reynolds’ Number. The Reynolds’ Number is a value
assigned to a dynamical System that describes the character of its fluid flow. It is

proportional to the density of a fluid, and the size of an object, and inversely proportional
to the viscosity of the fluid:

R=pvd/p

A small value of the Reynolds’ Number describes a system in which viscous

forces dominate, and a large value indicates that inertial forces dominate (Berger 2000).
B.2.4 Boundary Layer

Compared to most fluids, the viscosity of air at atmospheric pressure is very
small. The air far away from moving baseball is essentially unaffected by frictional
forces. However, air molecules close to the baseball may be greatly affected. A thin layer
of fluid develops very close to the baseball may be greatly affected. A thin layer fluid
develops very close to the sphere in which particles experience a shearing stress. This

layer of fluid is called a boundary layer, credited to Ludwig Prandtl (Berger 2000).

10

Th
@ boundary layer appears fo systems described by a large Reynolds’ Number.

,{\‘cc?rdlng to .Prandtl, “Through fluid with only slight friction behaves just like a
frictionless fluid at places where there is no boundary, a thin

‘boundary layer’ is formed
at the walls as a result of friction”

ounidary are negligible, but close to the
boundary, they are on the same order of magnit

ude as the inertia of the fluid. No matter
how small the viscosity of the fluid is, any body movifig through it drags along a thin
layer of fluid (Berger 2000),

One factor that may affect the boundary layer is the turbulence that is induced in
the surrounding air. Turbulence can penetrate a uniform boundary layer and greatly alter

the character of the airflow past a baseball. For turbulent flow differs greatly from the
smooth, laminar airflow is typical for lower velocities (Berger 2000).

B.2.5 Resistance

The phenomenon of boundary layer separation is what leads to the air resistance
experienced by a ball. The chaotic flow in wake region leads the pressure on the back of
the ball to be much lower than the pressure on the front of the ball. The kinetic energy
lost by air molecules in the boundary layer of the ball bound up in the eddies in its wake.

It is not reconverted to potential energy. The existence of the wake creates a drag force
on the ball (Berger 2000).

The magnitude of this drag force is proportional to the difference in pressure from
front to back times the area over which it acts. Bernoulli’s principle provides a model to
deal with the pressure difference. At the front of the ball, fluid particles essentially
dammed up, with zero velocity. Behind the ball, they ultimately leave with velocity v. By

Bernoulli’s equation, the difference in pressure is
=1 2
Dr—-p2="apy

Thus, if A is the area of the ball, the total drag force is

Fy =% pav* x Cy

Cais the drag coefficient, whose value is a function of the Reynolds’ number.

B.3 The Ball, the Table, and the Paddle

In table tennis, not only the path of the ball through the aif is taken into account
but also the bounce of the ball on the table and the plager’s paddie. Although spin affects
the way the ball bounces on both table and paddle, the effects of spift can not be observed
without the other factors involved in collisions,

B.3.1 Momentum and Collisions.

The momentum of a body is defined as the product of its mass and its velocity.
Momentum is usually represented by the symbol p.

p=my

A force is required to change the momentum is required to change the momentum
of an object, whether it is to increase it, decrease it, or to change its direction.

The concept of momentum is particularly important because, under certain
situations, momentum is a conserved quantity. During the mid-seventeenth century, it had
been observed that the momentum of colliding objects remain constant. No matter what
the velocities and masses involved are, it is found that the total momentum before

collision is the same as afterwards, whether the collision is head-on or not, as long as no

net external force acts (Giancoli 1995).

A collision is a brief dynamic event consisting of the close approach of two or
more particles, such as atoms, resulting in abrupt change of momentum, or exchange of

energy (hitp://www.answers.com/collsion?cat=biz-fin).
Impulse is equal to the total change in momentum. The following is the equation:

FAt=p

12

The quantity on the left, the product of the force I times the change in time At

over which the force acts, is the impulse. The concept of impulse is of help mainly with
forces that act over a short time, as when a racket hits g ping pong ball.

There are two types of collsions: (1) elastic, and (2) inelastic. In an elastic
collision, the total kinetic energy is conserved. Kitietic energy is represented as KE, and

is computed by multiplying the mass of the object to the square of its velocity, then
divided by two:

KE =Y, m/

In an elastic collision, on the other hand, KE is not conserved. The initial KEs of

the two objects are equivalent to the final KEs plus the other form/s of energy produced
(Giancoli 1995).

Collisions occur between the ball and table, and between the ball and the racket.

B.3.2 Friction

Friction is a force that resists the relative motion or tendency to such motion of
two bodies in contact (http://www.answers.com/friction?cat=health). The force of friction

is solved by multiplying the coefficient of friction and the normal force exerted by the
surface on the object:

Fﬁicz,uFN

The coefficient of friction (#) will depend on the situation. If the object is
stationary, u is equivalent to the coefficient of static friction. It the object’s horizontal
force exceeds the force of friction, u is equivalent to the coefficient of kinetic or sliding
Jriction. The coefficient of static friction is almost always greater than the coefficient of
kinetic friction, and it can never be less (Giancoli 1995).

Since table tennis involves a ball and a surface (table or paddle), only a small
surface of the ball is contact with the table, And since the collision between the ball and

13

the surface takes a very small time frame, friction can only occur in that time frame, and

there would not be enough time for the ball to slide on the sufface. Thus, only static
friction will be considered.

C. Other Concepts

C.1 Kinematics

Mechanics is the study of motion of objects and the related concepts of force and
energy. It is divided into two parts: (1) kinematics, which is the description of how
objects move, and (2) dynamics, which explains why the objects move as they do
(Giancoli 1995).

Kinematics is well observed in the physical world. An object moving without
rotating is called translational motion,

There are three major kinematics equations:
Vr=v; +at
Ax = vit + Y af*
Ax =/ —v?)/ 2a

The first equation is used in solving the final velocity of an object moving in a
straight line. vris the final velocity, v; is the initial velocity, a is the acceleration, and t is
the time taken. The second and third equations are used in finding the change in the
distance (Ax).

C.2 Gravity

Falling bodies are acted upon by a force called gravity. This force causes the
object to accelerate downwards.

14

During Galileo’s time, it was widely believed that an object’s speed as it falls

depends on its mass. Galileo believed otherwise, He postulated that all bodies would fall

| with the same constant acceleration in the absefice of air or other kind of resistance. He
; showed that the postulate predicts for an object falling from rest, the distance traveled
will be proportional to the square of the time, The uiform acceletation is also known as
the acceleration due to gravity, and is given a symbol of g. On earth, it is approximately

equal to 9.8 m/s®, downwards. For simplicity of some computations, g is assumed to be
negative.

The weight of an object is equivalent to its mass multiplied to the acceleration due
to gravity. In equation form:

W=mg
Like all falling bodies, the table tennis ball also falls towards the earth.

C.3 Newton’s Laws

Newton has derived three laws of motion. They are the following:

(1) Every body continues in its state of rest or of uniform speed in straight line
unless it is compelled to change that state by net force acting on it.

(2) The acceleration of an object is directly proportional to the net force acting
on it and is inversely proportional to its mass. The direction of the
acceleration is in the direction of the applied net force.

(3) Whenever one object exerts a force on a second object, the second object
exerts an equal and opposite force on the first.

The first law of motion is also known as the Law of Inertia. The measure of the

inertia of a body is its mass. The second law is also known in the form of an equation:

2F =ma

16

CHAPTER 11

METHODOLOGY
A. Overview of the Methodology

The study aims to develop g computer softwate program that can simulate the
path of a spinning lightweight spherica body (table tennis balfy and give reafistic
physics-based results rendered in 3p graphics. The program will be written and compiled

in Visual C++ compiler with Suppott from the Windows and DirectX APIs.

The program will have three major parts:

(1) The Physics Engine - a collection of physics and math functions. It will be
divided into two files: the CPP file which will contain the function definitions
and the Header file which will contain the function prototypes/declarations
and necessary data structures.

(2) The Graphics Engine — a collection of graphics functions and sound and input
wrapper functions. It will be adapted from Andre Lamothe’s graphics engine
that came in a CD along with his book Tricks of the 3D Game Programming
Gurus.

(3) The Shell Program — the main program that have access to both graphics and
physics engine, thus integrating the two engines. The shell program will be
written in a single CPP file. It will define how the program will look like and

how it will run.

h part will be tested after development of each one to minimize error at the
Each part

end of the development of the final program.

B. Methods

B.1 Gathering of Materials and Physies Concepts

a. The internet was searcheq for different physics concepts governing table tennis.
The results were the following:

Aerodynamics

Streamlines anq Bernoulli’s Principle
Viscosity

Boundary Layer

Drag Force |

Momentum, Collisions and Impulse

Friction

b. A personal computer (PC) installed with Visual C++ compiler and DirectX

software development kit (SDK) will be used.

c. A royalty-free graphics engine that will be the basis of the study’s own graphics

engine will be taken from the CD that came with Andre Lamothe’s Tricks of the 3D

Game Programming Gurus book.

18
B.2 Development of the Physics Engine

The physics engine wi i
ngine will be built go that it will handle all the physics computations

ro . Som
of the program. Some of these computations may be as simple as vector addition or as
complex as computing for the Magts Force

The physics engine will be taking inputs defined by the shell program. Inputs will
be initially given by the user, in tum processed by the shell program and passed to the
physics engine. The inputs are the injtja{ velocity and orientation, initial spin velocity and

orientation, and position of the ball. The injtia| velocity and spin velocity are magnitudes,

and the orientations are angles, where for the velocity, there are two angles.
The functions in the engine will involve the following computations:
B.2.1 Drag Force
Fa=Y% AV x C,

where, p is the density of the fluid, 4 is the area of the object, v is the velocity,
and Cy is the drag coefficient.

B.2.2 Vectors
Addition
u+v=<u+ Vg U+ Vv, u+v>
Subtraction
U-v=<Ug— Vg Uy—Vy, Uz— V>
Length

2 2
Ly | = sart? + vl + v

Cross Product

UHxy=
<uy"z - “z"y, lleg — ”va ll,v, - v:“’>

The formulas will be placed in separate functions with parateters. Then the
function will use local variables to avoid unintended manipulation of other datas. To
apply the equations above, the following format will be observed:

type func_nam(func_params)
{
operations

}

Where type is the variable type of the return value, func_name is the name of the
function, func_params is/are the parameters, and the operations is/are the operations that

will be performed on the values of the parameters.

As an example, here is a pseudocode for the addition of 2d vectors:
VEC2D add_vec2d (VEC2D vl, VEC2D v2)

{
VEC2D temp;

vli.x + v2.Xx;

temp.x
temp.y = vl.y + v2.y;

return (temp) ;

20
B.2.3 Struct“m

B.3 Development of the Graphics Engine

The graphics engine will be adapted from that of Andre Lamothe that came with
his book Tricks of the 3D . Game Programming Gurus. It can render 3d objects on a 2d

screen by performing transformations. The engine can also handle sound files and

keyboard and mouse inputs. There will be modifications such as integration of multiple

files into one and removing unneeded code.
B.4 Development of the Shell Program
The shell program will have five main functions:

(1) WinMain() — All windows Program must have this function. It handles the
initializations of the window, registering the class, and the main program loop,

which is responsible for throwing messages from Windows to the WinProc()

21

function, and making the call to the Prog_Main() function, updating the screen
at a rate of 30 - 60 frames per second (fps)

(2) WinProc() — This function will receive messages thrown by the WinMain()

function which are not needed by the simulation, 1 wifl then decide what to
do with the messages,

(3) Prog_Init() — This will handle all initializations not related to Windows but
needed by the program. These initializations involves file loading, setfing up
of lookup tables, and other necessary initializations.

(4) Prog_Shutdown() — This function cleans up the resources taken and used by

the program like releasing the DirectX interfaces.

(5) Prog_Main() — This function makes the calls to the two engines. This also
decides what to do with gathered inputs. The flow of the simulation process
will also be found here. Also, the interface of the program is defined here.

B.5 Testing of the Final Program

The entire program will be tested. If the results are physically realistic, the next

step will be taken. In case of an error, a bug, oraglitch,thepanoftheprogtmnthat

committed the error will be rewritten.

22

CHAPTER tv
RESULTS AND DIscussion

the basics of a bouncing ball withoyt spin,

- :
¢ graphics of the program produced 4 wire frame 3-dimensional simulation of
the ball instead of the intended oOutput of a solid 3d ball model

The physics computation was off. The effect of gravity on the ball was unrealistic
and can be considered as CQmpletely wrong. The drag computation was plausible.

When the program was run, it takes the default value for the velocity of the ball
and computes the drag force each iteration of the main loop of the program. The
following handles the main loop of the program:

while (1)

{

if (PeekMessage(&msg,NULL,0,0,PM_REMOVE))

{

// test if this is a quit
if (msg.message == WM _QUIT)

break;

// translate any accelerator keys

TranslateMessage (&msg) ;

} // end if

// main game processing go
€8 here

Game_Main() ;

} // end while

The computation we
re .
N, ction.

23

Load_OBJECTADV1_3DSASC (gpajy
4

“ball.obj”, &vsacle, &vpos, &vrot);

This code loads the file ba1 . °b3 Which contains the ball model data into the ball

object pointer. &vscale, &vpos, gvrot are pointers to the scale, position and rotation
vectors, respectively.

The code above is defined below:

int Load_OBJECT4DV1_3DSASC(0BJECT4DV1_PTR obj, char *filename,
VECTOR4D_PTR scale, VECTOR4D_PTR pos,
VECTOR4D PTR rot, int vertex flags)

{

CPARSERV1 parser;

char seps[16];

char token buffer([256];

char *token;

int r,q,b;

memset (obj, O, sizeof (OBJECT4DV1));

obj->state = OBJECTADV1 STATE ACTIVE | OBJECT4DV1_STATE VISIBLE:

if (pos)

{

obj->world pos.x = Pos->x;

1]

obj->world pos.y Pos<>y,

obj->world pos.z = pos-5z;

[}

obj->world pos.w pos-sw;

}
else

{
obj->world pos.x = (;

obj->world pos.y = 0;
obj->world pos.z = q;

obj->world pos.w

]
=

}

if (gparser.Open(filename))
{
Write_ Error("Couldn't open .ASC file s’ filename);
return(0) ;
}
while (1)

{
alsg (!parser.Getline(PARSER_STRIP_EMPTY LINES |

PARSER STRIP WS ENDS))

{

Write Error("Image 'name' not found in -ASC file %s.",

filename) ;
return(0) ;
}

1f (parser.Pattern Match(parser.buffer, "['Named'] ['object:']"))

{

strcpy(token buffer, parser.buffer);

strcpy(seps, n\nw,,
strtok(token~buffer, Seps)
:
token = strtok(NULL, seps)
:

strepy (obj=>name, token) ;

Write Error(®
\nAsc Readey Object Name: g45%
; 8", obj-sname) ;

}
}
while (1)
{

1f (lparser.Getline (PARSER STRIP mypry LINES |
pARSER_STRIP_WS_ENDS)) _

{
Write Error(™'Yri-mesh® line not found in .ASC file 3s.",
filename) ;
return(0);
}
qE (parser.Pattérn_Match(parser.buffer, "['Tri-mesh, ']
['Vertices:'] [i] ['Faces:'] [i]M))

{

obj->num vertices = parser.pints[0];

obj—->num polys = parser.pints[1];
Write Error("\nASC Reader Num Vertices: %d, Num Polys: 3d",

obj->num_vertices, obj->num polys);

break;

}
while (1)

{

return(0);

}

if (parser.Pattern
_Match(parser.buffer. "['Vertex'] [118ts71%))
{ .
Write Error(

b
nASC Reader found vertex list in
filename) v

«ASC file %s.%,
break;
}
}
for (int vertex = 0; vertex < obj

—>num vertices; vertex++)

{
while(1)
{

if (!parser.Getline(PARSER;STRIP_EMPTY;LINES |
PARSER STRIP_WS_ENDS))
{
Write Error("\nVertex list ended abruptly! in .ASC file %$s.",
filename) ;
return(0) ;
}
StripChars (parser.buffer, parser.buffer, ":iXYZ");
if (parser.Pattern Match (parser.buffer, "['Vertex']l [i] [f] [f]

(£1"))

°bj‘>Vllst‘l°°°1[”‘rtexl.x ~ parser.pfloats(0]s

°bj—>VIis;‘1°°al[”ertexJ.Y parset.pfiloats(i]
: /

obj—>vlist_1oca1[Vertex].z Parser.pfioats (2]
obj->vlist_local[vertex].w . i

//#define VERTE&_FLAGS_INVERT X

//#define VERTEX_FLAGS_INVERT_;

//#define VERTEX_FLAGS_INVERT§Z

//#define VERTEX_FLAGS_SWAP_Y; 8
//#define VERTEX‘FLAGS_SWAP_XZ 16
//#define VERTEX_FLAGS_SWAP_XY 32
//#define VERTEX_FLAGS_INVERT_WINDING ORDER 64
float temp f;

if (vertex flags ¢ VERTE&_FLAGs_INVERT X)

ObJ‘>V1iSt;local[vertex].x=—obj—>vlist_local[vertex].x;

(vertex flags & VERTEX FLAGS INVERT Y)

obj‘>V'1iSt__1ocal[V6rteX].y=—obj—>vlist_local[vertex].y;

(vertex flags & VERTEX FLAGS INVERT %)
obj—>v1ist_local[vertex].z=—obj->vlist_local[vertex].z;
(vertex_flags & VERTEX FLAGS SWAP YZ)

SWAP (obj—>vlist local([vertex].y, obj->vlist local[vertex].z,

(vertex flags & VERTEX FLAGS_SWAP_XZ)

SWAP(obj—>v1ist_loca1[vertex].x, obj->vlist_local([vertex].z,

(vertex flags & VERTEX FLAGS SWAP_XY)

SWAP (obj->vlist local[vertex].x, obj->vlist_local[vertex].y.

write_Error(“\nVértex 8d
= 8f, 4f
’

0bj->vlist_loca1[vertex)
0bj->V118t_1oca1[vettex].y,

Obj->011st~loca1[vertex}.z,

if (scale) o

{

o= & = =
obj->vlist) cal[vertex].x* scal
e->x%;

obj—>vlist_local[vertex].y*=scale >
=>y:

;

break;
}

}
}

Compute__OBJECT4DV1_Radius(obj);

ite Exrror("\nObject . _
Write_ J average radius = %f, max radius = $£",

obj—)avg_;adius, obj->max radius);
while (1)

{

if (!parser.Getline(PARSER_STRIP_EMPTY LINES |
PARSER STRIP WS ENDS))

{

Write Error("\n'Face list:' line not found in .ASC file $s.",

filename) ;
return(0) ;

}

3, st vertex,

29

->vlist_loca1[vertex].w);

if (parser.Pattern Match(parser.buffer, "['Face'] ['list:']"))

{

write_ Error(

gipename)’
break:

}

}
jnt P°1Y_3urface_desc = 0} case
int poly_num_verts = 0;

chat trp_string(8];

"\nasc
Reader found face 118t in

+A8C file %s. ”'

or (int poly=0; poly < °bj~>num;polys; POly++)

{
while(l)

{

if (!parser.Getline(PARSER_STRIP EMPTY LINES |

pARSER_STRIP_WS_ENDS))

{

X ndEd i i r

filename) ;

return(0) ;

}

stripChars (parser.buffer, parser.buffer, ":ABC");

if (parser.Pattern Match(parser.buffer, "['Face'] [i] [i] [i]

[i1"))
{

if (vertex flags & VERTEX FLAGS_INVERT WINDING ORDER)

{

poly num verts

obj->plist[poly].vert[0]
obj->plist[§oly].vert[1]

obj->plist[poly].vert[2]

3;
parser.pints([3]:
parser.pints[2];

parser.pints[1];

30

31

else
| {

pol y_num_\lerts

[

3

; obj->plist[poly].vert(o] « patsetr.pints(1];

obj->p11st[poly].vert[1] = parser.pints(2];

obj->plistipoly] .vett(2] parser.pints(3];

}
obj->plistpolyl.vlist = ocbj-sy1ist local;

preak:
}

}

while (1)

{
if (!parser.Getline(PARSER STRIP EMPTY LINES |

pARSER_STRIP_WS_ENDS))

{

Write Error("\nmaterial list ended abruptly! in .ASC file %s.",
filename) ;

return(0) ;

}

ReplaceChars (parser.buffer, parser.buffer, ":\"rgba", ' '};

if (parser.Pattern Match(parser.buffer, "[i]l [i] [i1"))

{

s
il

parser.pints[0];

g = parser.pints[1];

o
i

parser.pints([2];
if (screen bpp==16)

{

SET—BIT(°bj">p118tlpolyl att
¢ r

+ POL,y4
obj=>plist [poly] \016p o WI_ATTR__RGBIG) F

Gsit(r' 9/ by

Write_Error(n\nPolygon 18-b3 1
-)4

}
else
{

-] ' 4
B 4bvi A R BBIT

obj->plist[poly)
b, palette, 0);

-bit' index=%d,, P obj__
plist[POlY].color);
>

}
poLY4DVl_ATTR_SHADE_MODE_GOURAUD);
POLY4DV1 ATT R S HADE_MODE_PHONG)
sET_BIT(obj—>plist[poly].attr,

POLY4 DW_ATTR_SHADE_MODE_FIAT) ;

obj->plist[poly].state = POLY4DV1 STATE ACTIVE;

break;
}
}
Write Error("\nPolygon $%d:", poly);
Writefgrror("\nSurface Desc = [RGB]=[%d, %d, %d], vert indices
[8d, 8d, %dl", r,g,b, obj->plist[poly].vert[0], obj-
>plist[poly].vert[1l], obj->plistipoly].vert[2]);
}
return(1);
}

The following code renders the ball model on the screen.

DDraw_Lock Back Surface();

Draw_OBJECT4DV1 Wirelé(&ball, back buffer, back _lpitch);

32

o Unlock_BaCk_Surface 0

raw_OBIECTADVL Wire1s(spnyy back
— Uf{gr' bae
k

ibvy b
<FTR ol
1pitch) ' v Uenan "video_butter,

/

// eaCh p°1yg°n

for (int poly=0; poly < ob3->num polys; Solyi

{

// render this polygon if and only if jtr

S Dot clipped, not culled,

// active, and visible, note however the

concecpt of "backface™ is
// irrelevant in a wire frame engine though

if (!(obj—>plist([poly].state g POLY4DV1_STATE ACTIVE) ||

(obj->plist[poly].state & POLYADV1_STATE CLIPPED) ||

(obj->plist[poly].state & POLY4DV1_STATE BACKFACE))

continue; // move onto next poly

// extract vertex indices into master list, rember the polygons are

// NOT self contained, but based on the vertex list stored in the
object

// itself

int vindex 0 = obj->plist[poly].vert[0];
int vindex_1 = obj->plist[poly].vert[1];

int vindex 2 = obj->plist[poly].vert[2];

Ipiteh) is defined:

33

raw the lines noy

// @
Draw_clip_l‘inela(°bj'>"li°t~tr°m[Vindeg 0 1.5 b
- Ry OBj«s
Vindexfo - J vliat_ttanc[
obj->vlist_trana[vindex__l l.n, obj-sviise ¢
vindexfl 1.¥r -
obj =>pPlistipolyj, colot,
video'_buffer. lpitch);

Draw__clip_l'inem(°bj‘>"113t~tra"3[Vindex 1 .4
- s P

obj->viist trans(
sindex 1 1-¥r

obJ->vlist_trans{ Vindex 2 .y, obj->vlist trans(
vindex-—z 1-¥r
obj->plist [poly]. color,

video_buffer, lpitch);

praw _Clip Linel6 (obj —>vlist_trans[vindex 2].x, obj->vlist trans|

vindex 2 1.y,
obj->vlist trans| vindex 0].x, obj —>vlist trans[
vindex 0 1.y,

obj->plist{poly].color,

video buffer, lpitch);

// track rendering stats
#ifdef DEBUG ON
debug polys_rendered per frame++;
#endif
} // end for poly

} // end Draw_OBJECT4DV1 Wirelé

The next code computes for the drag force.

vel
haiy + ball_ares / 2y
__MBQ) * 0-16'
= ball_posz + (ve

: pall vel ball - (DRAGE /bai
Ve -

pall_MasS is its mass, and ball_posz is jtg position along the
Z-axis.

r CALLBACK WindowProc (HWND hwng
14

RESUL

LPARAM lparam)

{
PAINTSTRUCT ps;:

anc hdc:
switch (msg)
{
case WM _CREATE:
{
return(0);
} break;

case WM_PAINT:

{ 5
hdc = BeginPaint(hwnd,&ps);
EndPaint (hwnd, &ps) ;
return(0);
} break;

case WM_DESTROY:

{

postQuitMéssage(O);

return(0);
j break;

default:break;

}

n (Defwindowl’roc(hwnd, msqg,
Wparam,]
Param)) ;

ret!¥

is code handles all may be
This es all the processes that are not needed by th
| Y the program but
by Windows. This manages the data :,y
n es the Sent to it and decides whether ¢ thr
0 throw the

default Windows Process function
ata 10 the It Wi ion or use the data t
0 quit or refresh the

mﬂg“"n'
Most of the intended computations and expected outputs of th
€ program were not

aOQUired'

SUMMARY,

5. Summary

The aim of this study is to create 5 co
mputer progam
that can g

ahght“’elght spherical body, specifically, a table tennig ball, with of
Plausible physics-based

results The program was made in three patts, the graphics
engine which

aphics, the physics engine which manages the physics computati —
on, and the main shell

srogram which integrates the two engines and handles the window related functions

The program displays a full screen 3p i .

graphical wire frame animation

of the path

% m mm

the current velocity and forces acting on the ball.
B. Conclusions

Creating a program that can simulate the path of a lightweight spherical body with
plausible physics-based result rendered in 3D graphics is attainable given that the maker

of the program has enough knowledge on the subject matter and the programming

language being used and has enough time dedicated in making program.

C. Recommendations

Future studies similar to this study are recommended to apply spin on the physics
computations and upgrading the wire frame graphics to solid graphics, and also using the
Windows GUI interface instead of full screen. If possible, making the program cross

platform is also recommended.

LITERATURE . 38

wchites

Anonymous. Bouncing Ball. Available: by, kel
; R Kelagous, comysey;
Anonymous. C++ Available: http//enwikj pedia - °°m0/000858
-OTg/wiki/C-++.

Anonymous. DirectX. Available: http:l/en.wikipedia otg/wik
-Org/wiki/Direcrs;
Anonymous. Drag (physics). Availabje. |
http://en.mlnpedia.org/wiki/Drag (physics)

AnONYMOUS. Magt}\{s Effect, Available:
http://en.mklpedia.org/Wiki/Magnus effect

Anonymous- ‘gi i il
h :” i .

Anonymous. Simulation, Available: http://en wikipedia iki/Simulati
. -org/wiki/Simulation.

Carini, J.. Effects of Spin on the Motion of 5 B
. . . > = all- 26 1 -
http:l/canm.phys1cs.md1ana.edu/E1OSIspinm'ngJ:g"z:o htsm‘ Al R,

Filippone, A., 2004. Aerodynamic Database: Dr. . g
http:/aerodyn.org/Dragftables htm] ag Coefficients. Available:

NASA Glenn Research Center. Ideal Lift of a Spinn; :
pinning Ball. Available:
http://www.grc.nasa.gov/WWW/K-lZ/airplane/beachhtml.)

Hsieh, C., Chang, C.. Rigid Body Simulation. 12 December 2006. Available:
http://www-scfusc.edu/~chiaminc/.

Letts, G.. The Basic Physics and Mathematics of Table Tennis / Ping Pong.

Available:
http://tabletennis.about.com/od/beginnersguide/a/physics mathsTT htm.

Letts, G.. The Physics of Spin in Table Tennis. Available:
http://tabletennis.about.com/od/basicconcepts/ss/spin_in_tt.htm.

Lewis, D.. CS448A Final Project: Rigid Body Simulation. Available: http:/www-
cs-students. stanford.edu/~dalewis/cs448a/rigidbody.html.

39
Electronic Journal Article

